
FLEX Editor

Technical Systems Consultants, Inc.

FLEX User Group
This document has been created
on behalf of the FLEX User Group
to keep FLEX Alive.

Many thanks to the copyright holder
of this manual for releasing the
copyright to the Flex User Group.

TSC 6809 Text Editing System

Copyright © 1979 by
Technical Systems Consultants, Inc.

P.O. Box 2574
West Lafayette, IN 47906

INTRODUCTION

Contained in the following pages is a complete description of the TSC
6809 Text Editing System. This system is a content-oriented text editor
which is powerful, simple to use, and easy to learn. The TSC 6809 Text
Editing System is available in a Kansas City Standard cassette version
and a FLEX 9.0 floppy disk version. This manual, in general, applies
to both versions. Commands, actions, and patch points specific to only
one version are so indicated.

GETTING THE SYSTEM STARTED

It is recommended that the user read the "Mini-Tutorial" and "Adapting
to Your System" sections of this manual before attempting to run the
editor.

Disk Version:

The general use of the disk version is completely described in the
section of this manual titled "Using the Disk Version".

Cassette Version:

The cassette should be loaded using your system’s cassette load routine.
After it has been loaded and all of the desired adaptations made, start
executing the editor at location 0 (zero). The system should respond
with:

 NEW FILE:
 1.00=

The system is now ready to accept the text file input from the keyboard.
If the editor is left and later it is desired to reenter the editor to
work on the previous text file, it is necessary to enter at location 3,
otherwise all workspace will be cleared.

- 1 -

- 2 -

TSC 6809 Text Editing System

 MINI-TUTORIAL

The purpose of this section is to briefly introduce the reader to the
use of the TSC 6809 Text Editing System. We will, therefore, illustrate
its use with a number of examples. In order to make it more obvious
what things are typed by the user and what things are displayed by the
editor, we will subscribe to the convention that things underlined are
user-typed and things not underlined are displayed by the editor.

When the editor is initially entered, the response is as shown above.
At this time we will create our file by simply typing all lines until
finished, terminating each line with a "carriage return".

 NEW FILE:
 1.00=THIS IS AN EXAMPLE OF THE FANTASTICALLY USEFUL
 2.00=TSC TEXT EDITING SYSTEM. A NUMBER OF
 3.00=EXAMPLES WILL BE SHOWN TO ALLOW EASY AND
 4.00=QUICK LEARNING OF ITS FEATURES.
 5.00=FOLLOWING ARE SOME NONSENSE LINES:
 6.00=ABCDEFGHIJKL
 7.00=AAAAAAAA
 8.00=TESTING 1234
 9.00=THIS EDITOR IS FUN TO USE!
 10.00=BBBBBBBB
 11.00=
 12.00=THIS IS THE END OF THIS FILE,
 13.00=AT LEAST FOR NOW.
 14.00=#
 13.00=AT LEAST FOR NOW.
 #

Notice it was necessary to type a pound sign (#) in column one to leave
the buffered input mode. At this time, the system printed the last line
and returned with the system prompt (a pound sign). The editor is now
ready to accept commands.

Any time characters are being typed into the editor the following two
characters have special meaning:

 1. "control" H - Deletes the last character typed (backspace).
 2. "control" X - Deletes entire current line being typed.

These are useful, when detected typing errors occur, for immediate
correction.

Each line of text in the edit file is given or has a line number which
is used by the editor to uniquely identify the line. Each line number
is of the form "m.nn" where "m" is an integer and "n" represents any of
the digits 0 through 9. To specify a line number, one has to specify
only that portion of the line number to identify it uniquely. For
example, 73, 73., 73.0, and 73.00 may be used to refer to line 73.00;
259.6 refers to line 259.60. The largest line number used with the
editor is 9999.99. Let’s denote a specification of a line of text by

- 3 -

TSC 6809 Text Editing System

the symbol "<line>". We will be using this symbol throughout this
document.

An editor command tells the editor what action is to be performed and
usually what line or block of lines are to be affected (if any). For
each editing facility supported by the editor, there is a directive
which is used in commands to indicate the desired action. For example,
the editor can delete lines of text from a file, insert lines of text
into the file, print lines contained in the file, and so on.
Corresponding to each capability there is a directive; hence, there is a
Delete directive, an Insert directive, a Print directive, and so on. If
we define the symbol <directive> to mean any editor directive, the basic
from of an edit command is

 <line><directive>

For example, the command to display (Print) line 12.00 is

 #12P
 12.00=THIS IS THE END OF THIS FILE,
 #
where "12" is the <line> specification and "P" is the <directive> in
this command. As can be seen in the example, this causes line number 12
to be printed on the terminal.

Now, let’s learn how to use the insert directive. In normal usage of
the word "insert" we say something like, "Insert this card after this
other card". To use the Insert directive, we specify the line after
which we want to insert new lines followed by an I:

 <line>I

After typing the directive followed by a carriage return, the editor
will select an appropriate line number and prompt for input by
displaying the line number followed by an equal sign. After each line
of text is entered and the carriage return is typed, the editor will
prompt for the next line. To exit from the "Insert mode" one simply
types a pound sign followed by an edit directive in response to a new
line prompt.

Some examples of the use of Insert are

 #8I
 8.10=THIS IS AN INSERTED LINE.
 8.20=SO IS THIS.
 8.30=#11 I
 11.10=ANOTHER INSERTED LINE.
 11.20=#6 P
 6.00=ABCDEFGHIJKL
 #

It should be noted that the editor may renumber some lines following the

- 4 -

TSC 6809 Text Editing System

inserted text. This occurs when enough lines are inserted such that the
inserted line numbers overlap line numbers in the original text.

Next, let’s learn how to use the Delete directive. With this directive
we can delete one line or a block of lines with one directive. To
delete only one line, we specify the <line> to be deleted followed by a
D:

 <line>D

When the carriage return is typed, the line disappears.

To delete more than one line we need to indicate not only the first line
to delete but also the last line to be deleted. Let’s call the last
line the "target" line and denote its specification as "<target>".
Although the editor supports fancier ways to specify the <target>, we’ll
just consider the two simplest: (1) <target> may be the number of lines
to be deleted (counting both the first and last line of the block), or
(2) <target> may be a pound sign followed immediately by the line number
of the last line of the block to be deleted. Some example <target>s
are: 3 (deletes three lines), 26 (delete 26 lines), and #26 (delete
lines through line 26.00).

The syntax to Delete a block of lines is

 <line>D <target>

where <line> indicates the first line to delete and <target> indicates
the scope of the delete.

To illustrate the use of the Delete directive, let’s assume we have a
file containing 53 lines with integer line numbers (i.e., 1, 2, 3,
...,53). With the directives

 #15D
 #24D #31
 #52D 2
 BOTTOM OF FILE REACHED
 #

we now have a file with lines 1 through 14, 16 through 23, and 32
through 51. The first directive deleted line 15. The second directive
deleted lines 24 through 31. The third directive deleted two lines
starting with line 52. Since it deleted the last line of the file, the
editor displayed the message "BOTTOM OF FILE REACHED".

Before we discuss any more directives, we need to expand the definitions
of <line> and <target>.

As editing operations are performed, the editor keeps track of the
"current line" which usually is the line most recently affected by a
successful edit directive. Upon entering the editor, the "current line"
is the first line of the file. If, for example, we have just inserted

- 5 -

TSC 6809 Text Editing System

three lines between lines 12.00 and 13.00, the current line will be
12.30. One should note that after a line or a block of lines have been
Deleted, the line immediately following the last one deleted is made the
current line (If the last line of the file was deleted, the new last
line of the file will be the current line).

In our discussions above, we have implied that one has to explicitly
indicate a <line> for each directive by specifying the line number of
the line of interest. However, if <line> is not specified in a
directive, the "current line" is used. For example, if one enters the
directive

 #D 2
 #

the editor will delete two lines starting with the current line. In our
example, since we were at line 6.00, the "D 2" operation deleted lines
6.00 and 7.00. As you will learn to appreciate, the "current line"
default for <line> is extremely handy.

After performing all of the above operations, our file now looks like
this:

 1.00=THIS IS AN EXAMPLE OF THE FANTASTICALLY USEFUL
 2.00=TSC TEXT EDITING SYSTEM. A NUMBER OF
 3.00=EXAMPLES WILL BE SHOWN TO ALLOW EASY AND
 4.00=QUICK LEARNING OF ITS FEATURES.
 5.00=FOLLOWING ARE SOME NONSENSE LINES:
 8.00=TESTING 1234
 8.10=THIS IS AN INSERTED LINE.
 8.20=S0 IS THIS.
 9.00=THIS EDITOR IS FUN TO USE!
 10.00=BBBBBBBB
 11.00=
 11.10=ANOTHER INSERTED LINE.
 12.00=THIS IS THE END OF THIS FILE,
 13.00=AT LEAST FOR NOW.
 #

We have seen that <line> may be specified by a line number or by default
to the current line. There are also several other ways to specify
<line>, or in other words, to move the pointer to a desired line prior
to the execution of an edit directive. One may also specify <line> with
a "+n" or "-n" (where n is an integer) meaning the next nth line in the
file or the nth previous line in the file, respectively. Two other
useful <line> designators are "↑" ("^" on some terminals) and "↓" ("!"
on some terminals). The up arrow "↑" is used to designate the top or
first line in the file. The down arrow "↓" is used to move to the last
line or bottom of file. These various <line> specifiers are shown in
the example below with the PRINT directive.

 #↑P
 1.00=THIS IS AN EXAMPLE OF THE FANTASTICALLY USEFUL

- 6 -

TSC 6809 Text Editing System

 #+3 P
 4.00=QUICK LEARNING OF ITS FEATURES.
 #! P
 13.QO=AT LEAST FOR NOW.
 #-2P
 11.10=ANOTHER INSERTED LINE.
 #

There may be times while editing a file when we know part of the
contents of a line of interest but don’t know its line number nor its
displacement from the current line. In such a case we can use the
"content-oriented" feature of the editor to find it. The syntax to
specify <line> in this way is

 /<string>/

where "/" is a character to delimit (enclose) the <string> which is a
sequence of characters known to be in the line. When <line> is
specified as "/<string>/", the editor will search from the current line
through the file to find the next line containing the specified
<string>. Some examples will help to clarify this: (1) /PRINT/ denotes
the next line containing the character string "PRINT", and (2) /GO TO
35/ refers to the next line containing "GO TO 35". If the <string> is
found in any subsequent line of the file, that line will be made the
current line and the requested edit operation will be performed on it.
If the <string> does not occur anywhere subsequent in the file, the
editor will issue the message "NO SUCH LINE" and will not change the
current line pointer. Note that the delimiter does not need to be a
slash; it may be some other character such as a quote (’) or a comma.
For example, ’A/B’ refers to the next line containing "A/B".

It is also possible to prefix the string designator with "-" (minus
sign) to indicate a previous line containing that string. A few
examples with our TEST FILE will show the use of "/<string>/" as a
<line> designator.

 #-/QUICK/P
 4.00=QUICK LEARNING OF ITS FEATURES.
 #;123; P
 8.00=TESTING 1234
 #+’END’ P
 12.00=THIS IS THE END OF THIS FILE,
 #

To summarize, we have seen that <line> may be specified a number of
ways, namely: (1) by default to the current line, (2) by typing a line
number, (3) by "+n" denoting the nth subsequent line, (4) by "-n"
referring to the nth previous line, (5) by /<string>/ denoting the next
line in the file containing the indicated string of characters, (6)
"-/<string>/" to denote the nearest previous line containing the
specified character string, (7) "↑" ("^" on some terminals) to denote
the first line of the file, and (8) "↓" ("!" on some terminals) to
denote the last line of the file.

- 7 -

TSC 6809 Text Editing System

Now lets turn our attention to expanding the definition of <target>. As
you may recall, a <target> is used in some directives to indicate the
number of lines to be affected by the edit operation. We have already
seen that a <target> may be specified by (1) an integer "n" indicating
the number of lines to be affected, as P3, meaning print 3 lines, and
(2) a line number preceded by a pound sign (#) indicating the line
number of the last line to be affected, as P #6, meaning print all lines
to and including line #6. The <target> is simply a designator telling
how many lines the edit directive should operate on. In addition to the
two mentioned forms of <target>, we also have, (3) if no <target> is
specified in a command whose syntax includes one, a <target> of 1 is
assumed, thereby affecting only one line. As with <line>, one may
specify <target> by (4) "/<string>/" which indicates the next line in
the file containing the specified character string, (5) "↑" to denote
the top line in the file, and (6) "↓" to denote the bottom line in the
file. A minus sign may be used to indicate that processing is to
proceed backward through the file in the following two cases: (7) "-n"
and (8) "-/<string>/".

With an understanding of <line> and <target> we can now discuss some
more directives. The Print directive is used to display a line or a
group of lines. Its syntax is

 <line>P <target>

where "<line>" and "<target>" may be specified in any of the ways
discussed above. To print just one line one needs to specify only
<line> followed by a carriage return; therefore, the following two
directives perform the same thing;:

 <line>P

and
 <line>
Going back to our test file, we can illustrate the various forms of
<target> as used with the Print directive.

 #2P
 2.00=TSC TEXT EDITING SYSTEM. A NUMBER OF
 #-1
 1.00=THIS IS AN EXAMPLE OF THE FANTASTICALLY USEFUL
 #P /EASY/
 1.00=THIS IS AN EXAMPLE OF THE FANTASTICALLY USEFUL
 2.00=TSC TEXT EDITING SYSTEM. A NUMBER OF
 3.00=EXAMPLES WILL BE SHOWN TO ALLOW EASY AND
 #! P -3
 13.00=AT LEAST FOR NOW.
 12.00=THIS IS THE END OF THIS FILE,
 11.10=ANOTHER INSERTED LINE.
 #-/BBB/ P -/123/
 10.00=BBBBBBBB

- 8 -

TSC 6809 Text Editing System

 9.00=THIS EDITOR IS FUN TO USE!
 8.20=SO IS THIS.
 8.10=THIS IS AN INSERTED LINE.
 8.00=TESTING 1234
 #12P!
 12.00=THIS IS THE END OF THIS FILE,
 13.00=AT LEAST FOR NOW.
 #

The first directive displayed line 2.00 and made that line the current
line. The second directive requested that the line immediately
preceding the current line be displayed. The third directive displayed
the block of lines from the current line down through the line
containing the character string "EASY". The fourth directive printed 3
lines starting at the bottom of the file and ending at line 11.10, which
becomes the current line. The fifth directive requested the previous
line containing the character string "BBB" be found, and then starting
with that line, display all lines going backwards through the file until
a line containing the character string "123" has been displayed. This
shows the extreme usefulness and power of the content-oriented
characteristic of the editor. The last directive requested that all
lines from line 12.00 to the end or bottom of file be displayed.

The next directive to discuss is Next which is used primarily to move
the line pointer. Although it may be used otherwise, usually it is used
only with the default <line>. Its syntax is

 N<target>

This directive finds the line indicated by <target>, displays it, and
makes it the current line. A few examples will illustrate its use.

 #↑P
 1.00=THIS IS AN EXAMPLE OF THE FANTASTICALLY USEFUL
 #N
 2.00=TSC TEXT EDITING SYSTEM. A NUMBER OF
 #N 6
 8.20=SO IS THIS.
 #N -2
 8.00=TESTING 1234
 #

The following directive performs single-line replacements or inserts.
Its syntax is

 <line>=<text>

where "<line>" specifies the number of the line to be replaced or
inserted and may, of course, default to the current line. "<text>" is
the text to comprise the line. To illustrate this directive, let’s
continue our example series.

 #=REPLACE CURRENT LINE HERE

- 9 -

TSC 6809 Text Editing System

 #5.25=THIS LINE CREATED WITH "EQUALS".
 #

The first directive changed the contents of line 8.00, the current line.
The second example inserted a line with the line number 5.25.

The next directive to be discussed is the Change directive. It is used
to change occurrences of one character string into another. Its syntax
is

 <line>C/<string>1/<string>2/ <target> <occurrence>

where "/" is a delimiter character to separate the two character
strings; "<string>1" is the character string to be replaced; "<string>2"
is the string of character to replace them; "<target>" specifies the
range of the changes; and "<occurrences>" specifies which occcurrence(s)
of <string>1 should be replaced in the line(s). If <occurrence> is 1 or
is not specified, then only the first occurrence of <string>1 in any
line of the block will be changed - the second or subsequent occurrence
of the string in such a line will not be affected. If 2 is specified
for <occurrence>, then only the second occurrence of <string>1 in any
line of the block will be changed. To change all occurrences of the
indicated string in the block, use an asterisk (*) for <occurrence>.
Let’s illustrate the Change directive by continuing our example.

 #4C/QUICK/FAST/
 4.00=FAST LEARNING OF ITS FEATURES
 #8.1C/THIS IS //
 8.10=AN INSERTED LINE.
 #-5C;A;$; ;SOME; *
 3.00=EX$MPLES WILL BE SHOWN TO $LLOW E$SY $ND
 4.00=F$ST LE$RNING OF ITS FE$TURES.
 5.00=FOLLOWING $RE SOME NONSENSE LINES:
 #12C/E/?/ -2 3
 12.00=THIS IS THE END OF THIS FIL?,
 11.10=ANOTHER INSERT?D LINE.
 #

The first example replaced the string "QUICK" with the string "FAST" in
line 4.00. The second example deleted the string "THIS IS" and a blank
from line 8.1. The third example starts at the fifth previous line
(line 3.00) and changes every occurrence of "A" to "$" down through all
lines until the line containing the character string "SOME" (line 5.00)
is reached. The last example changes the third occurrence of "E" to "?"
in line 12.00 and then in line 11.10.

The last directive to be discussed is used to exit from the editor.
This can be done several ways: STOP, S, or LOG. This will return you
to your system monitor.

Now lets go back to our test file and illustrate some of the features
and directives we have discussed.

- 10 -

TSC 6809 Text Editing System

 #↑P!
 1.00=THIS IS AN EXAMPLE OF THE FANTASTICALLY USEFUL
 2.00=TSC TEXT EDITING SYSTEM. A NUMBER OF
 3.00=EX$MPLES WILL BE SHOWN TO $LLOW E$SY $ND
 4.00=F$ST LE$RNING OF ITS FE$TURES.
 5.00=FOLLOWING $RE SOME NONSENSE LINES:
 5.25=THIS LINE CREATED WITH "EQUALS".
 8.00=REPLACE CURRENT LINE HERE
 8.10=AN INSERTED LINE.
 8.20=SO IS THIS.
 9.00=THIS EDITOR IS FUN TO USE!
 10.00=BBBBBBBB
 11.00=
 11.10=ANOTHER INSERT?D LINE.
 12.00=THIS IS THE END OF THIS FIL?,
 13.00=AT LEAST FOR NOW.
 #2C/C /C 6809 /
 2.00=TSC 6809 TEXT EDITING SYSTEM. A NUMBER OF
 #/BBB/
 10.00=BBBBBBBB
 #-;THIS IS; C ’E’XX’ !
 1.00=THIS IS AN XXXAMPLE OF THE FANTASTICALLY USEFUL
 2.00=TSC 6809 TXXXT EDITING SYSTEM. A NUMBER OF
 3.00=XXX$MPLES WILL BE SHOWN TO $LLOW E$SY $ND
 4.00=F$ST LXX$RNING OF ITS FE$TURES.
 5.00=FOLLOWING $RXX SOME NONSENSE LINES:
 5.25=THIS LINXX CREATED WITH "EQUALS".
 8.00=RXXPLACE CURRENT LINE HERE
 8.10=AN INSXXRTED LINE.
 9.00=THIS XXDITOR IS FUN TO USE!
 11.10=ANOTHXXR INSERT?D LINE.
 12.00=THIS IS THXX END OF THIS FIL?,
 13.00=AT LXXAST FOR NOW.
 #N -4
 10.00=BBBBBBBB
 #-1 I
 9.10=TEST-TEST-TEST
 9.20=1234567890
 9.30=#D!
 BOTTOM OF FILE REACHED
 #↑D!
 BOTTOM OF FILE REACHED
 #↑P!
 #S

The previous tutorial has been only a brief introduction to the TSC 6809
Text Editing System. The remainder of this manual contains a detailed
description of each directive with examples, in the next section,
followed by "How to Use Tape" and "Using the Disk Version". It is
important to read and study the entire manual in order to fully
understand and utilize all of the power and features of this editor.

- 11 -

TSC 6809 Text Editing System

- 12 -

TSC 6809 Text Editing System

EDITOR DIRECTIVES

The following sections more explicitly describe all the editor commands,
use of special features and adapting to your system. You would be well
advised to first read the Mini-Tutorial preceding this section. It will
give you an overall feel for what the editor can do, thus making the
detailed descriptions more understandable. Before getting into the
complete descriptions of the editor directives, a few general points
will be covered.

USING STRINGS:

Several of the editor directives use character strings as arguments.
These arguments are either matched against strings in the text, or
replace a string in the text. A string argument begins after a
delimiter character and continues as a sequence of any legal characters
until the delimiter is again encountered. The delimiters are not
considered part of the string to be used in the matching or replacement
operations. Although the delimiters in the following descriptions are
frequently represented as slashes, "/", any non-blank, non-alphanumeric
character may be used as the delimiter such as: * / () $ = , . [] : ’
etc. Note that the following characters may not be used to enclose
strings unless they are preceded by either a plus (+) or minus (-) sign:
"↑" (denotes first line of file), "!" (denotes last line of file), "-"
(denotes target is above current line), and the character denoted by
LIN0 (normally a pound sign) which is used to flag line numbers. The
delimiter character is redefined in each new request by its appearance
before a string. If two strings exist in one directive (as in the
CHANGE directive), the same delimiter character must be used for each
string.

All of the editor directives use the <line> information preceding the
directive to position the pointer prior to any directive action. The
<line> parameter may of course be null, meaning leave the pointer at its
current position. All of the following are valid <line> designators:

 1. Any number references a specific line number

 2. +n denotes the nth subsequent line

 3. -n denotes the nth previous line

 4. /<string>/ refers to the next line in the
 file containing the indicated
 string of characters

 5. -/<string>/ refers to a previous line con-
 taining the indicated string

- 13 -

TSC 6809 Text Editing System

 6. ↑ denotes the first line of the file

 7. ! denotes the last line of the file

 8. null stay at the current line

Many of the editor directives require <target> Information. This tells
the editor to operate on the "current" line and all other lines in the
file up to the line referenced by the <target>. In cases where a
<target> is required, leaving it null will make the <target> default to
one, meaning only the current line will be affected by the directive.
All of the following are valid <target> designators:

 1. an integer n indicates that n lines should be
 affected by the edit operation

 2. #n denotes the line number of the
 last line to be affected

 3. /<string>/ denotes the next line in the file
 containing the specified character
 string

 4. -/<string>/ references the previous line con-
 taining the indicated string

 5. ↑ denotes all lines up to the top of
 the file

 6. ! denotes all lines to the bottom
 or last line of the file

 7. +or- n Indicates that n lines should be
 affected and in which direction
 from the current line

 8. (null) defaults to 1 and only the current
 line is affected

As we have seen, the form <target> is used to specify a range of lines
to which the directive will apply. The directive will be applied to
each line, starting with the line specified by <line> and continuing
until the target is reached.

If a string <target> is specified, the directive will apply to
successive lines of text until a line containing the string is reached.
Processing proceeds downward in the file unless the target is preceded
by a "-" (minus sign), indicating that processing is to occur upward
(toward the first line) in the file. Targets may also be preceded by a
plus sign (indicating downard movement). If a line number target is
specified, processing begins at <line> and proceeds toward the target

- 14 -

TSC 6809 Text Editing System

line number. Some examples of <target>s are:

 2
 +10
 -3
 /STRING/
 +/STRING TARGET/
 -/BACKWARD DISPLACEMENT TO A STRING/
 +*ANY DELIMITER WILL WORK FOR STRING*
 ++EVEN PLUS SIGNS CAN WORK+
 #23.00

SPECIFYING A COLUMN NUMBER:

Any "/<string>/" descriptor may be postfixed with a column number
immediately after the second delimiter to indicate that the preceding
string must begin in the column specified to be found. If the column
specified is not in the range of the ZONE in effect, the request will be
ignored. Some examples are:

 /IDENT/11
 /PROGRAM/77
 *LABEL*2
 $COMMENT$30

USING THE DON’T CARE CHARACTER:

A "Don’t Care Character" may be set to allow indiscriminate matches of
parts of a string. When this character is placed in a string, any
character in the file will automatically match. The Don’t Care
Character will have its special meaning only in a string being used to
search the file. In other words, the Don’t Care Character will not act
as such in a replacement string such as the second string of a CHANGE
command. The Don’t Care Character may be effectively disabled by
setting it to a null. Assuming we have previously set the Don"t Care
Character to a "?", here are some examples:

 /A???/ This would match any 4 letter
 string beginning with A

 @03/??/78@ This would match all days in
 the 3rd month of 1978

 /???/9 This would match any 3 letter
 string starting in column 9

- 15 -

TSC 6809 Text Editing System

The COMMAND REPEAT CHARACTER:

A special "Command Repeat Character" has been set up in the editor to
allow you to exactly repeat the last command in the Input buffer. If a
command causes an error or changes the contents of the input buffer, an
ILLEGAL COMMAND will be reported upon subsequent use of the Repeat
character until another repeatable command is entered. The repeat
character is originally set to a CTRL R or 12 hex. Some examples of
commands which may be useful to repeat are:

 PRINT 15 To print a screen of lines
 at a time

 NEXT Allows you to single step thru
 the file with one key

 ↑C0!! To quickly fill the workspace

 FIND/SOME STRING/ If the first string found
 is not the one desired

USING THE EOL CHARACTER:

The editor supports an "EOL" or "End Of Line" character to allow
multiple commands in a single line. INSERT and OVERLAY are exceptions
in that they cannot be followed by other commands. The EOL character
may be interactively changed using the SET command. An example of EOL
use (with EOL set to "$") is:

 ↑D2$P10$T

This sequence will delete the first 2 lines of the file, then print the
next 10 lines, and finally return the pointer to the top of the file.

USING TABS:

The user may interactively specify a tab character and up to 20 tab
stops. The tab character may then be inserted into a line where it will
be expanded when the end of the line is received. If tab stops or the
tab character have not been previously set, but some character has been
used throughout the file as a tab, it can still be expanded by setting
it to be the tab character, setting up your tab stops and then using the
EXPAND command on the file. Note that if the tab character has been
set, subsequent uses of the INSERT or REPLACE commands will cause
automatic tab expansion. However if a tab character is added to the
file by the use of a CHANGE, APPEND or OVERLAY command, that character
will remain intact in the file until the EXPAND command is invoked on
the line containing that tab character.

- 16 -

TSC 6809 Text Editing System

EDITOR DIRECTIVES

There are five groups of editor directives: environment directives,
system directives, "current line" movers, edit directives, and tape
directives. A complete description of all directives in each group is
given below. In the following descriptions, quantities enclosed in
square brackets ([...]) are optional and may be omitted. A backslash
(/) is used to separate options.

ENVIRONMENT DIRECTIVES:

H[EADER] [<count>]

 MEANING:
 A header line of <count> columns will be displayed. The heading
 consists of a line showing the column numbers by tens, followed
 by a line of the form "123456789012..." to indicate the column
 number. Columns for which tab stops are set will contain a
 minus character instead of the normal digit. If a column count
 is given, it becomes the default such that if just "H" is
 subsequently typed, that number of columns will be printed.

 EXAMPLES:

 HEADER 72 Display column number headings for
 72 columns

 H 30 Display column numbers for 30
 columns

NU[MBERS] [OFF/ON]

 MEANING:
 The line number flag is turned off or on. If the flag is off,
 then line numbers will never be printed. If neither "OFF" nor
 "ON" is specified, then the flag will be toggled from its
 current state.

 EXAMPLES:

 NUMBERS OFF Turn line number printing off

 NU ON Turn it back on

 NU Toggle from on to off or from
 off to on

- 17 -

TSC 6809 Text Editing System

REN[UMBER]

 MEANING:
 The "renumber" directive will renumber all of the lines in the
 current edit file. Lines in the renumbered file will start with
 line number "1.00" and will have an increment of one. The line
 which was current before the command will still be the current
 line after the command (although its number will probably have
 been changed).

 EXAMPLES:

 RENUMBER Renumber the lines in the current
 working file

 REN

SET <name> = ’<char>’

 MEANING:
 SET is used to define certain special characters or symbols.
 The <name>s which may be set are:

 TAB - the tab character
 FILL - the tab fill character
 DCC - the "don’t care" character for string searches
 EOL - the end of line character which may be used to
 separate several commands on a single line
 LIN0 - the line number flag character which is used to
 indicate that a target is a specific line number

 The default values are: DCC, TAB and EOL are "null"
 FILL is "space"
 LIN0 is "#"

 (In the disk version, TAB and EOL are initialized
 to the values set in the FLEX Operating System.)

 EXAMPLES:

 SET TAB=’/’ Set the tab character to a slash

 SET TAB=’’ Disable tabbing by setting the tab
 character to a null

 SET FILL=’ ’ Set tab fill character to a blank

 SET EOL=’$’ Set the EOL character to $

 SET LINO=’@’ Set the line number flag to at sign

- 18 -

TSC 6809 Text Editing System

TAB [<columns>]

 MEANING:
 Used to set the tab stops. All previous tab stops are cleared.
 If no columns are specified, then the only action is to clear
 all tab settings. Any tab characters occurring beyond the last
 tab stop are left in the text. The maximum number of tab stops
 allowed is 20. Tab stops MUST be entered in ascending order.

 EXAMPLES:

 TAB 11, 18, 30 Set tab stops at columns 11, 18,
 and 30

 TAB 7 72 Set tab stops for a FORTRAN program

 TAB Clear all tab stops

VE[RIFY] [ON/OFF]

 MEANING:
 The verify flag is turned on or off. The verify flag is used by
 the directives CHANGE and NEXT (and several others) to display
 their results. If neither "ON" nor "OFF" is specified, then the
 flag will be toggled from its current state.

 EXAMPLES:

 VERIFY OFF Turn verification off

 V ON Turn it back on

X
 MEANING:
 "X" is the cursor control command. Any time this command is
 entered, the editor will issue the 6 special character string
 previously set up. See "Adapting to Your System" for details.

 EXAMPLES:

 X Output cursor control string

Z[ONE] [C1,C2]

 MEANING:
 ZONE is used to restrict all sub-string searches (FIND, CHANGE,
 <target>s, etc.) to columns "C1" to "C2" inclusive. Any
 substrings beginning outside those columns will not be detected.
 If C1 and C2 are not specified, then the zones will be reset to

- 19 -

TSC 6809 Text Editing System

 their defaults (columns 1 and 136).

 EXAMPLES:

 ZONE 11, 29 Restrict searches to columns 11
 through 29

 ZONE Search columns 1 thru 136

SYSTEM DIRECTIVES:

LOG

 MEANING:
 Exit the editor.

 EXAMPLES:

 LOG

S[TOP]

 MEANING:
 Same as LOG.

 EXAMPLES:

 STOP

 S

"CURRENT LINE" MOVERS:

B[OTTOM]

 MEANING:
 Move to the last line in the file and make it the current line.

 EXAMPLES:

 BOTTOM Make the last line of the file the
 current line

 B

- 20 -

TSC 6809 Text Editing System

F[IND] <target> [<occurrence>]

 MEANING:
 Move the current line pointer to the line specified by <target>
 and make it the current line. If the VERIFY flag is on (see
 VERIFY), the line will be printed. If <occurrence> is specified
 (an unsigned integer or an asterisk), the directive will be
 repeated <occurrence> times. If <occurrence> is an integer, it
 must not start in the first column following the second
 delimiter of a string <target>, as it would then appear to be a
 column specifier for that string. If no column is to be
 specified, insert a space after the second delimiter and before
 the < occurrence> as in the second example given below. An
 asterisk means all occurrences of the <target> will be found
 until the bottom or top of the file is reached. If the target
 is not found, the current line pointer will not be moved.

 EXAMPLES:

 FIND /STRING/ Find the next line containing the
 string "STRING"

 F/THREE LINES/ 3 Find the next three lines contain-
 ing the string "THREE LINES"

 F/ALL ’TIL BOTTOM/* Find all following occurrences of
 the indicated string

 F-/PROGRAM/7 Find all previous lines which have
 the word "PROGRAM" starting in
 column seven

N[EXT] [<target> [<occurrence>]]

 MEANING:
 The line specified by the target is made the current line. If
 the VERIFY flag is on, the line will be printed. If
 <occurrence> is specified, it must be an unsigned integer. It
 indicates which next occurrence of a line containing the target
 is to be made the current line. If the target is not reached,
 the current line pointer will be positioned at the bottom of the
 file (or top of the file for a negative <target>). If no target
 is specified, the next line will be made the current line.

 EXAMPLES:

 NEXT 5 Make the fifth following line the
 current line

 N Make the next line the current line

 N-10 Make the 10th previous line current

- 21 -

TSC 6809 Text Editing System

 N/STRING TARGET/ Make the next line containing
 "STRING TARGET" to be the current
 line

 N/3RD OCCURRENCE/ 3 Make the third line containing the
 indicated string the current line

T[OP]

 MEANING:
 The first line of the file becomes the current line.

 EXAMPLES:

 TOP Make the first line of the file
 the current line

EDIT DIRECTIVES:

A[PPEND] /<string>/ [<target>]

 MEANING:
 Append the specified <string> just beyond the last character of
 the current line (and to successive lines until the target is
 reached). If the string is postfixed with a column number, then
 append the string beginning at the specified column (rather than
 at the end of the line). Any characters previously in the line
 following the specified column will be lost.

 EXAMPLES:

 APPEND Append a period to the end of the
 current line

 A *HELLO* 2 Append the word "HELLO" to the end
 of the current line and to the end
 of the next line.

 A/SEQUENCE/73 *END*7 Append the word "SEQUENCE" starting
 in column 73 of the current line
 and successive lines until a line
 containing the characters "END"
 beginning in column seven is found

C[HANGE] [<string1>/<string2>/ [<target> [<occurrence>]]

- 22 -

TSC 6809 Text Editing System

 MEANING:
 Replace the string specified by <string1> with the string
 specified by <string2>. If no <target> is specified, only the
 current line is affected. The slashes represent any non-blank
 delimiter character. <occurrence> is used to specify which
 occurrence of <string1> is to be replaced in each line. It is
 either an unsigned integer or an asterisk ("*") signifying that
 all occurrences of the substring <string1> are to be replaced
 with <string2>. By default, only the first occurrence will be
 changed. Note that if <occurrence> is specified, and if changes
 are to occur to the current line only, then the target should be
 a 1 (one).

 EXAMPLES:

 CHANGE /THIS/THAT/ Replace the first occurrence of
 "THIS" in the current line with
 "THAT"

 C/A/B/ 1* Change all occurrences of "A" in
 the current line to "B"

 C /FIRST/LAST/10 Change the first occurrence of
 "FIRST" to "LAST" in the current
 line and also in the nine follow-
 ing lines

 C /NEW/OLD/ /A TARGET/ Change the first occurrence of
 "NEW" to "OLD" in each line down
 through the line containing the
 string "A TARGET"

 C ,A,, -10 * Remove all "A"s in the current
 line and in the nine preceding
 lines

 C*HELLO* Delete the character string
 "HELLO" from the current line

CC[HANGE] [<column>]/<string1>/<string2>/ [<target> [<occurrence>]]

 MEANING:
 CCHANGE stands for Controlled Change. This command is exactly
 like the normal CHANGE command except that the user can
 interactively specify whether each line containing <string1>
 should actually be changed or left as is. This allows the user
 to step thru the file and selectively change certain strings,
 When a line containing <string1> is found, it is displayed at
 the terminal and the user receives a prompt, "CHANGE?" If it is
 desired that the line be changed, type a "Y" for yes. A
 character other than "Y" will cause the line not to be changed.
 If an "S" is typed, the command will terminate. Other

- 23 -

TSC 6809 Text Editing System

 characters will cause a search for the next line to be changed.

 EXAMPLES:

 CCHANGE/ALPHA/OMEGA/!* Perform a Controlled CHANGE on
 all occurrences of "ALPHA" thru
 the rest of the file

 CC;A;Z;-20 3 Perform a Controlled CHANGE on
 the third occurrence of "A" in
 the current and previous 19 lines

CO[PY] [<destination-target> [<range-target>]]

 MEANING:
 The current line and successive lines until the <range-target>
 is reached are copied so that they follow the line specified by
 <destination-target>. The default <destination-target> is 1,
 thereby causing a copy of the current line to be placed after
 the next line. The default <range-target> is 1, thereby copying
 only one line. After the directive is executed, the current
 line pointer will be set to the new position of the last line
 copied. Some lines may be renumbered after a copy with no
 renumbering message issued.

 EXAMPLES:

 CO #18 Put a copy of the current line
 after line 18

 COPY #3 4 Copy four lines beginning with
 the current line and place them
 after line 3

 CO /CHECK/ +/RANGE/ After the next line which has
 the string "CHECK", place a copy
 of each line starting with the
 current line through the line
 containing "RANGE"

D[ELETE] [<target>]

 MEANING:
 The current line (and successive lines until the target is
 reached) is deleted. After the directive is executed, the
 current line will be the line following the last line deleted.

 EXAMPLES:

 DELETE 5 Delete five lines (the current
 line and the next four lines)

- 24 -

TSC 6809 Text Editing System

 D Delete the current line

 D /STRING/ Delete lines from the current
 line through the next line that
 contains the string "STRING"

EXP[AND] [<target>]

 MEANING:
 The current tab character is expanded within all lines,
 beginning with the current line, continuing down to and
 including the line specified by <target>. Since tabs are
 normally expanded as lines are inserted into the file, this
 directive is primarily of use when one has forgotten to define a
 tab character.

 EXAMPLES:

 EXPAND 100 Expand 100 lines starting with
 the current line

 EXP Expand the current line

I[NSERT]

 MEANING:
 The editor will enter the buffered input mode, prompting with
 line numbers (unless line numbers have been disabled, see the
 NUMBERS directive) and insert the lines below the current line.
 Buffered input continues until a line beginning with the
 breakpoint character (a pound sign, "#") in column one is
 received. The characters following the breakpoint character are
 treated as an editor directive. The editor will try to choose
 an insertion increment sufficient to insert at least 10 lines,
 or if that is not possible, the smallest increment possible.
 The current line pointer is positioned at the last line
 inserted. It should be noted that the editor may renumber text
 lines following the inserted text if the inserted line numbers
 overlap line numbers previously in the file.

 EXAMPLES:

 INSERT Accept line input after the
 current line

 I Same

- 25 -

TSC 6809 Text Editing System

I[NSERT] <text>

 MEANING:
 The text (sequence of characters) which immediately follows the
 separator (or blank) after the directive name will be inserted
 as a separate line below the current line of the file. The line
 inserted becomes the current line. It should be noted that the
 editor may renumber text lines following the inserted text if
 the inserted line number overlaps line numbers previously in the
 file.

 EXAMPLES:

 I THIS BELOW THE CURRENT LINE OF THE FILE

 INSERT EVERYTHING AFTER THE FIRST BLANK

MO[VE] [<destination-target> [<range-target>]]

 MEANING:
 The current line and successive lines until the <range-target>
 is reached are moved so that they follow the line specified by
 <destination-target>. The default <destination-target> is 1,
 thereby moving the current line after the next line in the file.
 The default <range-target> is 1, thereby moving only one line.
 After the directive is executed, the current line pointer will
 be set to the new position of the last line moved. Some lines
 may be renumbered after a move with no renumbering message
 issued. Attempting to move a large block of data may result in
 the message "NOT ENOUGH ROOM". This is because the MOVE command
 performs a COPY and then deletes the old text. If there is not
 enough room for the copy, the move is not possible. If this
 message is received, break the move operation up into several
 smaller moves.

 EXAMPLES:

 MOVE 3 Move the current line down three
 lines

 MO #1 /TARGET STRING/ Move the current line and all
 lines down thru the line con-
 taining "TARGET STRING" after
 line 1

 MO -/PROGRAM/ 5 Move five lines (including the
 current line) up within the
 file so that they follow a
 line containing the character
 string "PROGRAM"

- 26 -

TSC 6809 Text Editing System

 MO #10 -5 Move the current line and the
 four previous lines below line
 number 10

O[VERLAY][<delimiter>]

 MEANING:
 The current line is printed, then a line of input is accepted
 from the terminal (the overlay line). The overlay line will be
 positioned directly beneath the line printed out. Each
 character of the overlay that is different from the <delimiter>
 character (which defaults to a blank) will replace the
 corresponding character in the current line. The overlaid line
 will be printed if verify is "ON".

 EXAMPLES:

 OVERLAY
 25.00=THIP IS THE CORRENT LUNE.
 OVERLAY S U I
 25.00=THIS IS THE CURRENT LINE.

O[VERLAY]<d><text>

 MEANING:
 This directive is similar to the previous form of the OVERLAY
 directive with these differences: (1) The current line is not
 printed. (2) The remainder of the directive line (after the
 delimiter character) is taken as the overlay text.

 EXAMPLES:

 OVERLAY---AT-------------------- NUMBER.
 25.00=THAT IS THE CURRENT LINE NUMBER.

P[RINT] [<target>]

 MEANING:
 Beginning with the current line, lines are printed until the
 line specified by target is reached. By default, only the
 current line will be printed.

 EXAMPLES:

 P Print the current line

 PRINT 5 Print 5 lines starting with the
 current line

 P -10 Print the current line and the

- 27 -

TSC 6809 Text Editing System

 nine previous lines

 PRINT *STRING* Print all lines down thru the
 next line containing "STRING"

 P -/STRING/ Print all lines up through the
 next previous line containing
 "STRING"

R[EPLACE] [<target>]

 MEANING:
 A DELETE from the current line through the <target> line is
 performed. The editor then enters the buffered input mode,
 putting the new lines into the area vacated. It is not
 necessary to enter the same number of lines as were deleted.
 The line numbers of the lines inserted will probably not be the
 same as those deleted. The current line pointer will be
 positioned at the last line inserted. By default, only the
 current line will be deleted.

 EXAMPLES:

 R Replace the current line

 REPLACE 10 Replace 10 lines starting with
 the current line

 R /TARGET STRING/ Replace all lines from the current
 line through the line containing
 "TARGET STRING"

=<text>

 MEANING:
 The "=" directive replaces the current line with the text
 supplied. The replacement text begins with the first character
 following the equals sign. The current line pointer is not
 moved.

 EXAMPLES:

 =THIS IS REPLACEMENT TEXT.

(null)

 MEANING:
 The null directive (i.e., just a carriage return) prints the
 current line.

- 28 -

TSC 6809 Text Editing System

TAPE DIRECTIVES:

GAP

 MEANING:
 Issue a string of 40 null characters to the tape unit.

 EXAMPLES:

 GAP Puts leader or gap on tape

READ

 MEANING:
 The next file present on the tape will be loaded. All the lines
 read will be appended to the end of the current work file and
 the last line read will become the new current line.

 EXAMPLES:

 READ Get the next file from tape

SAVE

 MEANING:
 Write the entire current file out to the tape unit. The tape is
 formatted as shown in the "USING TAPE" section of this manual.
 The file is terminated with an ASCII "control Z" character.

 EXAMPLES:

 SAVE Puts the current file on tape

W[RITE] [<target>]

 MEANING:
 This directive is much like SAVE. The only difference being
 that SAVE puts the entire file on tape, while WRITE puts all
 lines from the current line through the target line onto tape.
 The same format as SAVE is used on the tape.

 EXAMPLES:

 WRITE Write the current line to tape

 WRITE #20 Write all lines from the current
 line thru line #20 out to the
 tape unit

- 29 -

TSC 6809 Text Editing System

USING TAPE:

The TSC 6809 Text Editing System contains four tape directives. These
can be used with most types of tape devices including paper tape and
Kansas City Standard cassette systems. When using SAVE or WRITE, the
text is sent out to the tape, one character at a time, in the following
form:

 TEXT...(C.R.)...TEXT...(C.R.)...TEXT...(C.R.)(CTRL Z)

The "CTRL Z" is the end of file marker. Note that there are no line
numbers, line feeds, or null characters put on the tape, so the file is
not suitable for displaying on a terminal in this form. When a tape is
read back into the editor using the READ command, line numbers are
automatically put back in. If there is more data on the tape than will
fit in the workspace, the tape will continue to play, ignoring the
excess characters. When the CTRL Z is reached, an error message will be
issued.

The TSC 6809 Text Editing System does not provide any routines for
issuing control characters for "tape on", "tape off", "record on", or
record off". These routines are to be provided by the user; see
"Adapting to Your System" for details.

- 30 -

TSC 6809 Text Editing System

USING THE DISK EDITOR

The TSC 6809 Text Editing System for the FLEX Operating System is a
content-oriented text editor which is powerful, simple to use, and easy
to learn. It is a great tool for creating or editing various types of
text files such as files for the Assembler, Text Processor, and various
language compilers and interpreters. The FLEX version is a "disk to
disk" type editor, meaning any size file which will fit on a single disk
may be edited, regardless of the amount of user’s RAM available (at
least 12K is recommended).

DESCRIPTION

The general syntax of the EDIT utility is:

 EDIT,<file spec 1>[,<file spec 2>]

The default extension is TXT and the default drive is the working drive.
If only <file spec 1> is given, and the name specified does not exist on
the disk, a new file with that name will be created. Creating new files
in this manner will cause the editor to respond:

 NEW FILE:
 1.00=

If the EDIT command line only has <file spec 1> specified and it is a
name which does exist on the disk, that file will be loaded into the
edit buffer, and the editor will issue a "#" as a prompt, signifying
that the editor is ready to accept user commands. When the editing
process is completed, the original file will now have the same name as
before editing except the extension will now be BAK, which stands for
"backup". If a file existed with the same name and an extension of BAK,
the editor will ask:

 DELETE BACKUP FILE?

Answering this with a Y will delete the old backup file and create a new
one. A response of "N" will return control back to FLEX. Any other
response will cause the question to be asked again. The newly edited
file will have the same name as the original, including the extension.
The final form of EDIT is similar to the above but allows assigning the
new file a specific name, different from the original. The original
would then keep its original name. It should be noted that when editing
an existing file, a new file is always created, and the original remains
intact, even though its name may be changed. Several examples will help
clarify the above syntax. Suppose you want to create a file called
TEST.TXT (no such name currently exists on the disk). The following
command line should be typed:

- 31 -

TSC 6809 Text Editing System

 EDIT,TEST

The editor would respond with "NEW FILE" and be ready to accept lines of
text.

Suppose you have created a file named TEST.TXT and you now wish to edit
it (make changes to it). Typing:

 EDIT,TEST

would now load the file TEST.TXT into memory and the editor would be
ready to accept commands. When the editing process is completed, and
control is returned to FLEX, the original file "TEST.TXT" will now have
the name "TEST.BAK", but its contents will be unchanged. The file
containing all of the changes made while in the editor will have the
name "TEST.TXT".

If it is still necessary to make more changes to the new file, the same
calling procedure may be used. Now, since there is a file called
"TEST.BAK" already on the disk, the editor will ask if you want the
backup file deleted. If deleted, the same procedure as above will again
take place, and you will end up with the old file having the name
"TEST.BAK" and the new one "TEST.TXT".

The final form of the EDIT utility is used if you desire to edit a file,
but give the new file a new name. If the following was the command
line:

 EDIT,TEST,TEST2

the file TEST.TXT would be loaded into the editor, and the new file
would have the name TEST2.TXT. This form of the command line should
also be used if it is necessary to edit a file from one drive, and put
the new file on a different drive. As an example:

 EDIT,O.TEST,1.TEST

would edit the file TEST.TXT on drive 0, and put the new file, TEST.TXT
on drive 1. The file TEST.TXT must not already exist on drive 1. Once
in the editor, all of the edit commands apply to the FLEX version of
the editor with a few exceptions. These differences are stated below.

EXITING THE EDITOR

The STOP command (or "S") should be used. The "LOG" command may also be
used. After typing STOP, LOG, or S, the editor will automatically
finish any old to new disk file transfers. If editing a large file,
this process may take a while, so do not expect FLEX to immediately
issue the prompt after exiting the editor.

The ABORT command will also return control back to FLEX; however, the
new disk file being created will be deleted and the original file being
edited will be given its original name. The net effect is as though no

- 32 -

TSC 6809 Text Editing System

edit session had taken place (with the exception of a previously
existing BAK file having been deleted).

SAVE, READ, WRITE, AND GAP

These commands are still supported but may now also be used to transfer
files (or parts of files) to and from the disk, as well as tape. The
GAP command may only be used with tape. Upon entering one of the above
commands, the editor will respond with:

 TAPE OR DISK (T-D)?

A response if "D" will then cause the editor to prompt for the disk file
name. A response of "T" will cause the editor to load from tape. Any
other response will cause the question to be asked again. Consult the
full editor manual for further details in using this set of commands.
NOTE: The SAVE command will write the entire content of the current edit
buffer to the file. Segments of the edit file which have been flushed
with the NEW and FLUSH commands (see below) will not be written, nor
will segments yet to be read into the buffer.

THE "NEW" COMMAND

The NEW command aids the editor in handling text files larger than what
will fit in memory at any one time. When editing a file, the editor
will only load memory with as much of the file as will fit. The NEW
command tells the editor that you are done editing that portion of the
file and wish to load more of the text into memory. The NEW command
works as follows: upon typing the command "NEW", the editor will write
everything from the top of the current work buffer (the first line
currently in memory) down to but not including the "current line" out to
the new file on the disk. At this time, if there is any unread part of
the original file, as much of it which can be placed in the unused
remaining space of the work buffer (memory) will be read in off of the
disk. Control will then be transfered back to the editor and the old
"current line" will now be the first line available to be edited. NEW
can be used anytime during the edit session, but keep in mind that once
it has been used, all parts of the file which were above the current
line pointer will become inaccesible for the remainder of the editing
session, since they have already been written out to disk. The editor
can only operate on text in memory (the work buffer), therefore, global
editor commands such as CHANGE and FIND will only be global with respect
to the text in the buffer, and not the entire file, unless of course,
the entire file will fit in the buffer. The NEW command may also be
used when creating a new file. While typing lines into the editor, it
is possible to fill the buffer and a message will be issued stating "NOT
ENOUGH ROOM". If this happens, typing NEW will cause the file from the
top, down to the line pointer, to be written out to the disk, thus
freeing up that much of the buffer space. Since no old file exists,
nothing new will be read in from the disk.

- 33 -

TSC 6809 Text Editing System

The FLUSH command works the same as the NEW command except that after
having written the text to the file, no additional text is read from the
file being edited. This command may be used to reduce the amount of
text in memory so that long disk or tape files may be read in using the
READ command, or large MOVEs or COPYs may be performed.

BUFFER SIZE

The amount of buffer space available is directly proportional to the
amount of memory installed in the computer. The more memory installed,
the larger the edit buffer will be. The editor automatically adapts to
the memory size.

- 34 -

TSC 6809 Text Editing System

ADAPTING TO YOUR SYSTEM:

The TSC 6809 Text Editing System has been assembled to run on a SWTPC
6809 system using the S-BUG monitor ROM. The cassette version uses as
few ROM-based routines as possible so as to allow easy conversion to
other monitor ROMS. The disk version is designed to run under the TSC
FLEX Disk Operating System and is not easily convertible to other disk
operating systems. In both versions, there are some adaptations which
the user may make to customize the editor for his own desires or needs.

Both versions of the editor are written to be position-independent and
will run correctly when loaded at any memory address, without the
necessity of modifying any instructions. The default load address is
location 0 (zero). This is also the "cold start" or main entry point
address. The "warm start", or re-entry address, is at location 3. The
patch addresses given below are relative to the default load address.
If the editor has been loaded at some address other than the default,
the patch addresses must be biased appropriately.

If you are not using the SWTPC S-BUG monitor ROM, you must supply an
input character routine, an output character routine, and a monitor
return address as described below. The "Input Character Routine",
"Output Character Routine", and "Return to Monitor Address" are vectored
through extended indirect jumps in the cassette version, and extended
jumps in the disk version. The patch addresses given below for these
routines are those of the jump instruction itself, not the address
portion. When supplying your own routines, replace the instruction with
either an extended jump or extended indirect jump, as appropriate to
your monitor ROM.

 1. INPUT CHARACTER ROUTINE - This routine is called by the editor to
 input a character from your keyboard into the A register and return.
 The parity bit is removed. No other registers must be altered
 except for condition codes. The address of the jump vector for this
 routine is at location 0006 hex.

 2. OUTPUT CHARACTER ROUTINE - This routine is called by the editor to
 output a character from the A register to your display device and
 then return. Except for flags, no other registers may be affected.
 The address of the jump vector for this routine is at location 000A.

 3. RETURN TO MONITOR ADDRESS - This is the routine to which the CPU
 will jump upon the execution of a STOP or LOG command. Generally it
 should be set to the re-entry address of your system monitor. The
 jump vector for this routine is at location 000E hex.

 4. FULL DUPLEX - If your terminal requires software echo of typed
 characters and your input routine does not provide this, change the
 JMP instruction at location 0006 to the corresponding JSR
 instruction. (If it’s a 6E, make it AD. If it’s 7E, make it BD and
 be sure that 0009 contains a NOP (12).) This change assumes your
 output character routine does not destroy the A register.

- 35 -

TSC 6809 Text Editing System

 5. MEMORY END - This pointer is the address of the last byte available
 in the edit workspace. It defaults to 4FFF hex in the cassette
 version, and to the FLEX "Memory End" value in the disk version.
 If you desire to change this value, store the value of the last
 usable address of the desired edit work space in location 0017 hex
 in the cassette version, and in the FLEX ’Memory End" location in
 the disk version.

 6. SYSTEM CHARACTERS
 A) PROMPT CHARACTER - The prompt character is stored at location
 0019 in the cassette version, and 0014 in the disk version. It
 is presently set to a "#" or 23 hex. Change if desired.
 B) DELETE CHARACTER - In the cassette version, the line delete
 character is stored at location 0016 hex. It is presently an 18
 hex. Change if desired. In the disk version the delete
 character is the FLEX delete character and should be changed
 with the TTYSET utility.
 C) BACKSPACE CHARACTER - In the cassette vesion, the backspace
 character is stored at location 0012 hex. It is presently an 08
 hex. Change if desired. In the disk version, the backspace
 character is the FLEX backspace character and should be changed
 with the TTYSET utility.
 D) BELL CHARACTER - When the input buffer is overflowed (more than
 136 characters typed), the editor outputs a "bell" character.
 This is stored at location 0013 hex in the cassette version, and
 0012 hex in the disk version and is presently set to a "CTRL G"
 or 07 hex.
 E) REPEAT CHARACTER - The command repeat character is stored at 001A
 in the cassette version and at location 0015 hex in the disk
 version. It is presenly set to a "CTRL R" or 12 hex.

 7. CURSOR CONTROL CHARACTERS - The editor outputs a string of six
 control characters upon execution of the ’X’ command. These can be
 set to special cursor control or other control characters. They are
 presently set to nulls (00). Leave the 04 at the end of the string
 intact! The string is located at locations 01CA-01CF in the
 cassette version, and at locations 01D4-01D9 in the disk version.

Adapting for Tape I/O

Because of the many different hardware configurations for tape systems,
the editor does not have any default tape I/O routines. An array is
provided for the user to patch in addresses of routines appropriate to
his configuration. An address of zero in any entry in this array
indicates that there is no such routine, and, in effect, acts as a
no-operation.

 1. TURN ON TAPE READ - This routine should issue the necessary control
 functions to start tape motion and prepare the tape hardware for
 read operations. After calling this routine, the editor will delay
 (see "Tape Delay", below). Put the address of your " Turn On Tape
 Read" routine in locations 001B-001C in the cassette version, or

- 36 -

TSC 6809 Text Editing System

 0016-0017 in the disk version.

 2. TURN OFF TAPE READ - This routine should issue the necessary control
 functions to terminate tape read operations and stop tape motion.
 After calling this routine, the editor will delay (see "Tape Delay",
 below). Put the address of your "Turn Off Tape Read" routine in
 locations 001D-001E in the cassette version, or 0018-0019 in the
 disk version.

 3. TURN ON TAPE RECORD - This routine should issue the necessary
 control functions to start tape motion and prepare the tape hardware
 for write operations. After calling this routine, the editor will
 delay (see "Tape Delay", below). Put the address of your "Turn On
 Tape Record" routine in locations 001F-0020 in the cassette version,
 or 001A-001B in the disk version.

 4. TURN OFF TAPE RECORD - This routine should issue the necessary
 control functions to terminate tape write operations and stop tape
 motion. After calling this routine, the editor will delay (see "Tape
 Delay", below). Put the address of your "Turn Off Tape Record"
 routine in locations 0021-0022 in the cassette version, or 001C-001D
 in the disk version.

 5. INPUT CHARACTER FROM TAPE - This routine should get one character
 from the cassette, returning it in the A register. No other
 registers should be destroyed. This routine defaults to the system
 "Input Character Routine". Put the address of your routine, if you
 need to change it from the default, in locations 0025-0026 in the
 cassette version, or in locations 0020-0021 in the disk version.

 6. OUTPUT CHARACTER TO TAPE - This routine should put the character in
 the A register on to the cassette. A register. No registers should
 be destroyed. This routine defaults to the system "Output Character
 Routine". Put the address of your routine, if you need to change it
 from the default, in locations 0023-0024 in the cassette version, or
 in locations 001E-001F in the disk version.

 7. TAPE DELAY - The editor is assembled to delay approximately 2
 seconds after calling one of the "turn on" or "turn off" routines.
 The value controlling this delay is stored at location 0015 hex in
 the cassette version and at location 0013 hex in the disk version.
 It is currently set to 06. Setting it to 0 is no delay with larger
 values causing longer delays.

SYSTEM CHARACTERISTICS:

 1. The maximum line number is 9999.99. If more than 9,999 lines are
 entered, the line number counter will turn over (go back to 0). the
 editor, therefore, should not be used with files of 10,000 lines or
 longer. (This is not really a limitation since 10,000 null lines
 (line number followed by a carriage return) uses up 40K of memory!)

- 37 -

TSC 6809 Text Editing System

 2. When specifying a line number which is less than one, it is
 imperative that a leading zero be placed before the decimal point.
 This is so that the line number will be classified as a number
 rather than a delimiter.

 3. The input buffer will hold 136 characters. If more than 136
 characters are typed, they will be ignored and a "bell" character
 output to the terminal. To terminate the line, it is necessary to
 type the backspace character and then a carriage return.

 4. Setting the "tab" character and the ’fill" character the same will
 delete the TAB feature. There is no logical reason to do this.

 5. The method of inserting a line at the top of a file is to use the
 command: "0INSERT" or "0I". Since there is no line numbered 0.00,
 the insert takes place at the top of the file.

- 38 -

TSC 6809 Text Editing System

